Death, survival, and morphological development of hippocampal granule cells born in an inflammatory environment Bonde, Sara
نویسنده
چکیده
The brain continues to form new neurons throughout life. This process of adult neurogenesis has been thoroughly documented in several species including birds, rodents and humans. Adult neurogenesis is not a global process, but is confined to two subcompartments of the brain; the subventricular zone lining the lateral ventricles, and the subgranular zone (SGZ) in the hippocampal formation. A variety of stimuli such as voluntary exercise, epileptic seizure activity and inflammation can affect the basal level of neurogenesis. In the course of pathological conditions such as Alzheimer’s disease, multiple sclerosis, epilepsy and stroke, an inflammatory response is initiated in the brain. Prolonged epileptic seizure activity, status epilepticus (SE), strongly imposes on the integrity of the delicate brain structure and cell communication. SE not only induces inflammation, but also neuronal death and a transient increase of basal adult neurogenesis in the hippocampal formation. What role inflammation plays in a disease such as epilepsy, and how it affects the neurons born in the aftermath of seizure activity, is largely unknown. The specific aim of the four studies included in this thesis was to investigate the effect inflammation has on the amount of basal and seizure-induced neurogenesis, and if the morphological development or functional characteristics of new neurons is affected when the neuron is born into an inflammatory environment. In brief, the purpose was to investigate the quantity and quality of the neurogenic outcome in inflammation. To comprehend the interplay between neurogenesis and inflammation would provide a valuable insight into disease progression, and could ultimately be part of the treatment or even a cure for pathological conditions involving seizure activity and
منابع مشابه
Inflammation regulates functional integration of neurons born in adult brain.
Inflammation influences several steps of adult neurogenesis, but whether it regulates the functional integration of the new neurons is unknown. Here, we explored, using confocal microscopy and whole-cell patch-clamp recordings, whether a chronic inflammatory environment affects the morphological and electrophysiological properties of new dentate gyrus granule cells, labeled with a retroviral ve...
متن کاملEnvironment Matters: Synaptic Properties of Neurons Born in the Epileptic Adult Brain Develop to Reduce Excitability
Neural progenitors in the adult dentate gyrus continuously produce new functional granule cells. Here we used whole-cell patch-clamp recordings to explore whether a pathological environment influences synaptic properties of new granule cells labeled with a GFP-retroviral vector. Rats were exposed to a physiological stimulus, i.e., running, or a brain insult, i.e., status epilepticus, which gave...
متن کاملBeneficial effect of Boswellia serrata gum resin on spatial learning and the dendritic tree of dentate gyrus granule cells in aged rats
Objective: The hippocampal formation, particularly the dentate gyrus (DG), shows age-related morphological changes that could cause memory decline. It is indicated that Boswellia resins attenuates memory deficits and the major component of Boswellia serrata (Bs) gum resin, beta boswellic acid increased neurite outgrowth and branching in hippocampal neurons. This study was designed to investigat...
متن کاملP75: Expression of GDNF Genes in the Cerebellum of Rat Neonate Born to Mother with Diabetes
Diabetes Mellitus as a common metabolic disorder in women of reproductive age is rising throughout the globe. Diabetes in pregnancy has various adverse outcomes on different organs development including the central nervous system (CNS) and it can cause learning deficits, behavioral problems and motor dysfunctions in the offspring. The cerebellum is a part of brain that coordinates voluntary mov...
متن کاملDelivery of Epidermal Neural Crest Stem Cells (EPI-NCSC) to hippocamp in Alzheimer\'s Disease Rat Model
Background: Alzheimer’s disease (AD) is characterized by progressive neuronal loss in hippocamp. Epidermal neural crest stem cells (EPI-NCSC) can differentiate into neurons, astrocytes and oligodendrocytes. The purpose of this study was to evaluate the effects of transplanting EPI-NCSC into AD rat model. Methods: Two weeks after induction of AD by injection of Amyloid-β 1-40 into CA1 area of ra...
متن کامل